
1640 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 6, JUNE 2002

Modification of Marcatili’s Method for the Calculation of
Anisotropic Rectangular Dielectric Waveguides

Sergey N. Dudorov, Dmitri V. Lioubtchenko, and Antti V. Räisänen

Abstract—Marcatili’s method for the calculation of rectangular dielec-
tric rod waveguides has been modified for uniaxial anisotropic dielectric
materials. The averaging method without guessing the field distribution has
been used to derive the equations. Experimental results for an anisotropic
sapphire waveguide show a good agreement with those calculated using the
approach developed here.

Index Terms—Marcatili’s method, rectangular dielectric waveguide,
uniaxial anisotropic sapphire waveguide.

I. INTRODUCTION

The problem of calculating the propagation characteristics of a cir-
cular dielectric waveguide can be rigorously solved relatively easily
using Bessel functions. However, in the case of a rectangular dielectric
rod waveguide (DRW), the problem becomes somewhat complicated,
particularly when the ratio of the permittivities of the rod and that of its
environment is large. The main cause of slow convergence of numer-
ical methods is the presence of sharp corners of the DRW [1].

A good exposition of the numerical methods for calculating gen-
eral millimeter-wave structures can be found, for example, in [2]. Nu-
merous methods of this kind can be applied to the problem of rectan-
gular DRW structures, particularly to the open rectangular DRW.

Today, the uniaxial anisotropic DRW is of increasing interest. A
simple theoretical approximation model for the calculation of the
propagation constant is required in addition to complicated, but
accurate ones (see, e.g., [3]). The most popular approximation is
the well-known “Marcatili method” [4]. However, this method was
developed for isotropic materials. In this paper, a new approach to the
solution of the uniaxial anisotropic case, displaying good accuracy
despite its simplicity, is proposed.

II. FORMULATION OF THE PROBLEM AND EXPERIMENT

The principal focus is the case in which the optical axis of material
coincides with the axis of a DRW in order to avoid the excitation of
an orthogonal mode and/or rotation of the polarization plane. TheEy

11

fundamental mode of the rectangular DRW with cross sectiona � b
has been selected and, by using its symmetry, one can formulate the
problem, as shown in Fig. 1.

However, rather than using the above approach, it was found in [5]
that Marcatili’s method for a rectangular DRW with cross sectiona�b
involves the solution of two problems for two dielectric slabs: a hori-
zontal slab of thicknessb and a vertical slab of thicknessa for the same
polarization. We have used the combination of these two approaches
(see Fig. 2 for the horizontal slab). In this study, we derive, using the
averaging method [6], the dispersion equation for a rectangular uniaxial
anisotropic DRW in the most interesting case in which the optical axis
coincides with thez-axis of the DRW. This method allows one to de-
rive the dispersion equations without guessing the field distribution.

Experiments were carried out in order to verify the calculated nu-
merical results. Sapphire was selected as a material for DRW because
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Fig. 1. Cross section of the waveguide problem.

Fig. 2. Anisotropic dielectric slab waveguide problem.

Fig. 3. Schematic setup of DWR vector measurements.

it is a typical example of a uniaxial anisotropic dielectric. Sapphire is
a nonmagnetic dielectric, therefore, its� is equal to that of vacuum.
S-parameter measurements of a sapphire DRW were carried out with
vector network analyzer (VNA) HP 8510 using the direct connection of
the input and output as a reference. A monocrystalline sapphire DRW,
oriented along the optical axis, with a cross section of 1.0� 0.5 mm2, a
total length of 112 mm, and a tapering section length of 6 mm (Fig. 3)
was used for the vector measurements [7]. Experiments and simula-
tions have shown that, in the case of a nonsymmetrical tapering of the
DRW end, matching is best achieved when the tip is located on the axis
of the metal waveguide. This results in an experimental setup, as shown
in Fig. 3.

III. T HEORY

One can show that there is no longitudinal componentEz , onlyHz ,
in the case of the vertical dielectric slab for theEy

1
mode, owing to

(@=@y) = 0 andHy = 0 [8]. Thus, only theEy-component is present,
and the corresponding equation in Marcatili’s method does not need to
be changed.
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Let us solve the dielectric slab problem shown in Fig. 2, when the
dielectric permittivity is determined by the matrix

" =

"? 0 0

0 "? 0

0 0 "k

(1)

where"? = "r?"0 denotes the permittivity in the direction normal to
the optical axis and"k = "rk"0 denotes the permittivity parallel to the
optical axis. In the following, permeability� is assumed to be scalar.

The main equations derived from [6] are

n�Et+ � n�Et�

d
= �j!�Ĥt �

1

j!"?
rt �rt � Ĥt

n�Ht+ � n�Ht�

d
= �j!"kÊt �

1

j!�
rt �rt � Êt (2)

where

Êt = (Et+ +Et�)f(�yd)

Ĥt = (Ht+ +Ht�)f(�yd)

f(�yd) =

tan
�yd

2

�yd
:

It is assumed that the permeability� of sapphire coincides with that in
vacuum. The transversal propagation constant�y will be determined
later. Subscript indexest+ andt� refer to the tangential components
of the corresponding vector on the upper and lower sides of the slab,
respectively. In our case,Et� = 0 because of the presence of the
electric wall.

The two Helmholtz equations for theEz- andHz-components in a
uniaxial anisotropic medium are [9]

r
2Ez � 1�

"rk

"r?

@2Ez

@z2
+ "rkk

2
0Ez = 0

r
2Hz + "r?k

2
0Hz = 0: (3)

SubstitutingEz = Ez(x; y)e
�jk z and (@=@x) = 0, one obtains

the following. For the field that is independent ofx, whereEz =
A exp(�j�yy � j�zz), one finds�y

�2y = k20"rk �
"rk
"r?

k2z =
"rk
"r?

k20"r? � k2z (4)

wherek0 is the wavenumber in vacuum. Substituting into (2)rt =
�jkz and rewriting these equations forx- and z-components sepa-
rately, one obtains the following.
x-components

Ez+

d
=

�2y
j!"k

(Hx+ +Hx�)f(�yd) (5a)

Hz+ �Hz�

d
=
�!2"k�+ k2z

j!�
Ex+f(�yd): (5b)

z-components

�
Ex+

d
= �j!�(Hz+ +Hz�)f(�yd) (6a)

�
Hx+ �Hx�

d
= j!"kEz+f(�yd): (6b)

One can notice that in (5a) and (6b), onlyHx andEz are present,
while in (5b) and (6a), we can find onlyHz- andEx-components. Let
us choose equations corresponding to theEy

1 mode, i.e.,Ex andHz

are equal to zero and only (5a) and (6b) are nontrivial.
By eliminatingHx�, one can obtain

2Hx+ = j!"kEz+

2

�y

1

tan(�yd)
: (7a)

For the air layer in Fig. 2, one can similarly write

2Hx+ = �j!"0Ez+

2

�0y

1

tan(�0yd0)
(7b)

where�02y = k20 � k2z . The “�” sign here comes from the fact that the
normal vector points in the opposite direction. Whend0 goes to infinity,
(7b) becomes

Hx+ = j!"0Ez+

j

�0y
(7c)

as the propagation constant in the structure in Fig. 2 is larger than that
in air and, therefore,�0y is an imaginary number. Combining (7a) and
(7c), one obtains

"rk

�y

1

tan(�yd)
=

j

�0y
: (8)

By introducingky = �y , ky2 = (�0y=j), andb = 2d and using relation
(1= tan(x)) = tan((�=2) � x), an equation similar to “Marcatili’s
equation” [4], [8] can be obtained as follows:

kyb = � + 2�n� 2 arctan
1

"rk

ky
ky2

(9)

wheren = 0; 1; 2; . . . ;1; ky = ("k="?(k
2
0"r? � k2z); ky2 =

k2z � k20 . The case ofn = 0 corresponds to theEy
1 fundamental

mode. To obtain the remaining possible modes (Ez is even with respect
to they = 0 plane), one can position the slab onto a magnetic wall.

Regarding the vertical slab, no longitudinal electrical-field compo-
nent is present for theEy

1 mode; therefore, the “longitudinal” permit-
tivity does not change the second “Marcatili equation” [4]

kxa = �m� 2 arctan
kx
kx3

(10)

wherekx3 = k20("r? � 1)� k2x; m = 1; 2; 3 . . ..
Thus, the solution procedure can be as follows. Using (9), one can

find kz , then solve (10) forkx and, eventually, find the correctkz�nal
as follows:

kz�nal = k2z � k2x: (11)

IV. RESULT AND DISCUSSIONS

The numerical results are summarized in Fig. 4. Equations (9)–(11)
were used to obtain the propagation constant for uniaxial anisotropic
waveguides for four combinations of"r? and"rk, i.e., 11.56 and 11.56,
11.56 and 9.39, 9.39 and 11.56 (which corresponds to sapphire [10]),
and 9.39 and 9.39, respectively.

The wavelength was measured directly at a frequency of 75 GHz by
using a movable discontinuity (a rectangular metal “ring”) in order to
obtain a reference point. The phase values were corrected (�2�n cor-
rection) to obtain continuous dependence of phase versus frequency.
Assuming a constant dielectric waveguide lengthL, one can write
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Fig. 4. k =k of a DRW made of uniaxial anisotropic materials with
cross dimensions of 1.0� 0.5 mm . (1) " = 11:56; " = 11:56.
(2) " = 11:56; " = 9:39. (3) Calculated experimental based on
the from phase measurement results. (4)" = 9:39; " = 11:56.
(5) " = 9:39; " = 9:39; }—directly measured experimental points.

�k = ��=L, where�� is the phase-shift change when frequency
changes by a small step to the next point, and�k is a change in the
propagation constant in the dielectric waveguide. After obtaining the
wavelength at one point by using the phase data, one can calculate
the propagation constants at other frequencies (Fig. 4, curve 3). For
comparison, the normalized propagation constant measurements were
repeated at 80, 85, 90, and 94 GHz. The results are shown in Fig. 4.

One can see in Fig. 4 (curves 3 and 4) that the modified Marcatili
method for the sapphire DRW gives a good agreement with the exper-
imental data. The fact that the theoretical curve lies below the experi-
mental one can be explained by the approximative nature of the Mar-
catili method.

Comparing curve 1 with 2 and 4 with 5, one can see that the
anisotropy changes the propagation characteristic considerably. The
dispersion is increased, as with curve 2, when"k is smaller than"? or
decreased when"k is larger than"?, as with curve 4. The latter could
be explained as follows. When the frequency is very high, there is
almost no longitudinal electric-field component, and the propagation
constant results mainly from"?. When the frequency drops, the
longitudinal component of the electric field becomes larger; therefore,
the effect of larger"k becomes stronger and, thus,kz=k0 increases.
Similarly, one can explain why the dispersion seen in the case of curve
2 is stronger.

V. CONCLUSION

In this paper, we have presented the modified Marcatili method for
the calculation of a rectangular DRW made of uniaxial electrically
anisotropic dielectric material with the optical axis coinciding with the
axis of the DRW. In a more general case (arbitrary direction of the op-
tical axis, anisotropic permeability, etc.), equations similar to (2) may
be derived and solved using this approach. Equations have been derived
without guessing the field distribution. This method is relatively simple
and sufficiently accurate for a DRW operating far from the cutoff, as
with the original Marcatili method for the isotropic case. The propaga-
tion constant of an anisotropic sapphire DRW oriented along the optical
axis has been measured. Experimental results show a good agreement
with those calculated by our approach.
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Microwave – Vector Modulator Using a Simple
Technique for Compensation of FET Parasitics

Mitchai Chongcheawchamnan, Sawat Bunnjaweht, David Kpogla,
Dongwook Lee, and Ian D. Robertson

Abstract—The analysis and design of an improved technique for the re-
alization of vector modulators using analog reflection-type circuits are pre-
sented. The analysis focuses on the detrimental effect that the parasitic ele-
ments of the FET variable-resistance elements have on the 360phase and
amplitude control. It is shown that a simple circuit technique can be used to
compensate for the parasitic effects and achieve a near-ideal constellation.
Compared with the balanced structure, the proposed technique leads to a
much smaller circuit area and does not require additional complementary
control signals. This makes it better suited to commercial wireless applica-
tions where low cost is paramount. Simulation and experimental results for
an L-band prototype are presented.

Index Terms—Cold FET, parasitic elements, vector modulator.

I. INTRODUCTION

The vector modulator plays an increasingly important role in
modern communication systems. For example, in a linearized ampli-
fier system, a vector modulator can provide simultaneous phase and
amplitude tuning, rather than applying a variable attenuator cascaded
with a variable phase shifter [1]. High-performance vector modulators
can be used as the electronic controllable elements for an adaptive
beamforming network in phased-array antenna applications [2]. In
digital communication applications, a vector modulator is widely
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